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Abstract

The advent of camera traps has brought high hopes regard-
ing a more fine grained understanding of animal species and
their behaviors through remote monitoring. In addition, the re-
cent growth in the capabilities of machine learning algorithms
promises to automate wildlife monitoring. This is important
for working towards grand visions like the United Nations’
Sustainable Development Goals on ecological protection and
restoration. According to the state of the field survey con-
ducted by WILDLABS [1], processing multiple data streams
to make ecological decisions will be highly desirable in the
high detail sensing movement. In this project, we experiment
with audio-visual machine perception using “low” resource
machine learning models as a way to improve species identi-
fication in real time use cases. The code used in this project
can be found at '

1 Introduction

Camera traps have become a widely used way to collect data
and learn from ecological species to improve our understand-
ing of the environment. However, there’s an increasing need
to process multiple streams of data collected from the wild,
eg audio and visual modalities [1] and with low resource de-
vices. This is especially useful in regions where low resource
devices like mobile phones are already abundant and people
needing to find uses for old phones. Not only can adding
audio modality assist with detection in low light conditions
(such as at night), having the image along side can improve
detection of certain species when it is hard to recognize them
by sound alone (eg during rough weather events). Again, hav-
ing a network of low resource devices such as proposed in [7]
helps to provide context for detection algorithms as well as
increase the chances of accurately estimating ecological mea-
sures of interest such as species density [2]. These are factors
that would help disambiguate scenarios where only partial

"https://github.com/emma-mens/elk-recognition/tree/main/
src/multimodal_species

information would make estimation less precise. In addition,
the setup of multimodal information sources from a network
of cheap sensors improves answers to harder questions that
require reasoning across space and time for sparsely sampled
sensor data.

In this project, we experiment with multimodal (audio-
visual) data as a way to improve animal species classification.
This is a first step in a longer project to gain more insight
into the high resolution ecological monitoring space. The
project focuses on low resource use cases since we aim to
not only situate ourselves to do near-sensor processing for
real-time applications but also to make some of the otherwise
computationally intensive machine learning models, more
accessible to ecologists. For the rest of the paper, we provide
a discussion on related works to this project, propose an initial
system to guide our future work and assess initial performance
of the system. Finally, we present a brief discussion.

2 Related Work

Camera traps have become a popular tool for monitoring
wildlife, especially when combined with remote servers for
post analysis. [13] provides a general discussion on different
types of camera traps and how their percentage of positive trig-
gers varies by distance and [14] presents factors to consider
when selecting camera traps for a project. There is however, a
number of projects looking at alternatives or supplements to
camera traps, using low resources devices. For instance, [18]
monitors birds using a camera trap with iOS mobile phone. [9]
also develops a programmable camera trap that optimizes for
cases where the speed of sending camera trap images to the
monitoring center needs to be high while optimizing for en-
ergy. [19] uses a standard camera with a motion detect script
to monitor flower-visiting animals albeit at a close up position
to the flower. [6] creates a RaspberryPi-Zero based camera
trap system augmented with a near IR light to continuously
film animal activity and can record up to 72-hr day and night
videos at >720p resolution with a 110-Wh power bank (30,000
mAh). Finally, [3] uses a mesh grid of Rpi sensor nodes to
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Figure 1: Our proposed system is a standard setup for a late fusion audio visual classification model. a) An input image which
may be difficult to detect based on various factors such as occlusion, camouflaging, etc. b) The efficient net model as defined
in [20]. ¢) An audio input to the d) PANNSs network as defined in [10]

collect wildlife monitoring data.

The literature is slowly introducing the use of audiovisual
modalities in wildlife monitoring. [4] conducts a literature
review on the strengths of using either visual or audio chan-
nels for monitoring species and assesses the benefits of using
the two channels jointly. [16] sets up a audio-visual mon-
itoring system using a three tiered approach (edge device,
geteway and cloud) and some low power detection algorithms
like Dynamic Time Warping. [23] assesses the performance
of audio-visual models that assume single visual source for
sound and how they fare when tested on more challenging
datasets. The SSW60 dataset [22] also motivates the use of
audio-visual models by discussing cases when two species
are difficult to separate visually but have distinct calls. Again,
they discuss the flip case where species are difficult to differ-
entiate by sound but are easy to tell apart visually, making
joint audio-visual models a better solution for stronger dis-
criminatory ability of models.

The field of multimodal machine learning is at this point,
quite established with models like CLIP [12] demonstrating
very impressive results with multimodal tasks such as co-
learning from language and visual data. Typical multimodal
models have separate models for each modality and combine
the representations learned by the separate models either early
in the network, middle or so called late fusion. Such models

are also usually trained using a contrastive loss (an objective
that forces representations of similar concepts to be close
in a fixed vector space and disparate concepts farther apart)
for unsupervised learning. In this project, we use a similar
approach to train multiple mobile models but focus on a
classification task.

3 Proposed System

The project went through a couple of phases during implemen-
tation but finally settled on using two recent and popular on-
device machine learning models. The visual model is based
on EfficientNet and the audio based on MobileNet, described
further below. The main detour that didn’t make it into the
final paper was the use of an EfficientNet based model for
audio classification named Contrastive Learning of General-
Purpose Audio Representations (COLA) [15]. Even though
this model setup was promising, we had difficulty replicating
the paper’s results in Pytorch (the machine learning frame-
work used for this project). We eventually found a MobileNet
version which performed more stably during training and is
what we moved forward with.



3.1 Image Model - EfficientNet

One of the insightful papers in recent years to come out of
Google presented a motivation for a more uniform scaling of
model properties (number of layers, width of layers, size of
convolution filters, etc) that previously were often tweaked
independently. From the paper, it was shown that scaling some
dimensions and leaving others tends to see under-utilization
of the potential from the increased dimensions.

For more discussion on this, see [20]. For this project, we
use the base model EfficientNet-BO (which is the smallest
size model proposed in the paper) and is most applicable in
the mobile device setting.

3.2 Audio Model - MobileNet

As mentioned above, the inital plan to use COLA fell through
due to difficulty replicating their results for an EfficientNet
based model during the quarter project. We therefore piv-
oted to another project called PANNs: Large-Scale Pretrained
Audio Neural Networks for Audio Pattern Recognition [10],
which had an on-device version of their network based on Mo-
bileNetV2 [17] that already had a pretrained pytorch model.
MobileNets were the previous most widely used mobile deep
learning models out of Google. The models focused on using
techniques such as depthwise separable convolutions which
refactored the convolution operation into a form that greatly
reduced the number of multiply-add operations needed to get
the same results. For a more detailed discussion of the de-
sign, see [17]. The PANNs model used in this paper combines
approaches to learn from audio waveform for frequency in-
formation while learning from spectrogram representations
to learn more time domain information about audio signals.

3.3 AudioVisual Late Fusion Model

Here we use the model from the diagram in Figure 1 to test if
there are any benefits to using the two modalities in this low
resource setting. We take the penultimate layer (before classi-
fication layer) of each of the image and audio models. Each
of these embedding layers is a vector of size 1280. These vec-
tors are combined (using concatenation to a vector twice as
long, taking a weighted average between the two vectors, or
the element wise maximum to allow for experimenting with
different ways to learn a joint representation). The combined
embedding layers are then fed through a feed forward neu-
ral network with on hidden layer of size 1024 and finally an
output layer of 60 for the number of bird species. In practice,
there are far more sophisticated ways to learn a joint represen-
tation but we use this approach to have a baseline for further
experimentation.

3.4 Pretraining

A common technique within the machine learning community
is to train a model on a large dataset and then tune it for
use cases similar to the original dataset but typically with
less data available. The process of training the model with
the initial large dataset is called pretraining. In this project,
we use the two models described above pretrained on two
famous datasets. For the visual modality, we use EfficientNet
pretrained on ImageNet [5], arguably the most famous image
dataset in the machine learning community, with 3.2 million
images. The audio modality is pretrained on AudioSet [8]
which contains 1.7 million 10 second segment audio clips with
632 classes collected from Youtube videos and spans natural
sounds, animal sounds, music, sounds of things etc. Both
datasets were built using human labelers to ensure correct
data to class association, leading to very high performing
pretrained models.

4 DataSet

For this project, we focused on the audio-visual birds dataset
[22] from the Cornell Lab of Ornithology, consisting of 60
bird species. The data was carefully annotated by experts
and has paired bird species images with corresponding audio
clips. They present both a paired dataset (with few examples
as shown in Figure 2) and an unpaired set of images and audio
dataset that we didn’t use in this term project but will use in
future iterations.

total min max median
Audio 2597, 1264 |28, 12 |52, 30 |45, 21
Video 3462, 1938 (38, 22 |68, 52 |59, 31

Figure 2: SSW60 Dataset statistics with the (train, test) split
presented in each column. The min, max and median columns
represent descriptive statistics of data points available for each
species in the dataset

We also set up the pipeline for iNaturalist dataset [21]
which has 10,000 species and so is more representative of the
final general purpose species classifier we are interested in.
We however don’t present results on the iNaturalist dataset
here but will be used for next steps of the project.

5 Experiments

In this section, we explore the contributions from the two
modalities to performance on fine grained species classifica-
tion tasks. In future works, we will explore the benefits of
finetuning the pretrained models described in Section 3 with
an object detection task instead to learn richer representations.



Data preparation for audio involved stripping the audio
portion from the bird video dataset and loading them at a sam-
pling rate of 16000Hz, single channel. The PANNs model then
accepts a waveform and a spectrogram representation of the
audio input. Since spectrograms which are more common in
the speech recognition community is made to represent audio
in the audible spectrum for humans, the double representation
here allows for more detailed information extraction.

For the images, we normalize using the mean and stan-
dard deviation of imagenet dataset, available in most machine
learning frameworks. We then augment the training images
with random rotations, horizontal flips and random blurring
to reduce too much memorization of the training data which
typically would lead to less generalizable models.

We train the models with a learning rate of 0.001 using
Adam optimizer with default parameters. All experiments
used a batch size of 32 as this was the largest we could fit
on GPUs used for training. Experiments are trained for 120
epochs and with a learning rate scheduler that is reduce by a
factor of 10 after 50 epochs.

6 Evaluation

6.1 Baseline Large Model Performance

To evaluate our model, we use the birds dataset and compare
our result to the baseline model used [22]. In the reference pa-
per, they used a state of the art transformer model named Mul-
timodal Bottleneck Transformer (MBT) [11] with 86 million
paramters, far more than can fit on mobile devices. Compared
to MBT, our training set up uses about 7 million parameters,
which is more manageable on small devices but will still need
to be reduced in follow up work. MBT is pretrained on Im-
ageNet and AudioSet and then fine-tuned in the birds paper
on the SSW60 dataset. We use a similar flow of datasets in
our experiments (EfficientNet pretrained on ImageNet and
PANN:S pretrained on AudioSet), as well as a final finetuning
on the birds dataset.

6.2 Our AudioVisual Model Performance on
SSW60 Test Set

We present initial results of our experiments in Table 1. The
first row of the table presents the baseline performance using
the state of the art audiovisual model.

6.2.1 Effects of Various Embedding Combination Meth-
ods

The second block of rows use pretrained audio and visual
models and experiment the effects of using different types
of embedding combination methods. We see from initial ex-
periments that concatenating the two embedding vectors pro-
duces the best results in our model setting (likely due to freer

Smoothed Value Step Time Relative
ap0_ip1 51.29 5231 92
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Figure 3: Training accuracy (top) and corresponding valida-
tion accuracy (bottom) of our multimodal setup. The (red)
curve is for the audio visual model that averages embeddings
from the two models, weighting audio with zero and image
with one, while the reverse is true for the (grey) curve. The
(blue) curve trains the multimodal model with only the audio
model pretrained and the image model started from scratch,
while the reverse is true for the (red) curve.

combination of representation vectors), although maximum
produces comparable results. It is also clear that the visual
modality contributes more to species detection performance
in the weighted average case since higher weighting of the
image embedding model produces better results.

6.2.2 Pretraining Effects

With the training setting used for our experiments, we had
the lowest performance with the audio visual case with no
pretraining in either model (middle row). However, the low
performance presented here is lower than is possible if we
trained the model much longer. Given the size of the birds
dataset though, it would certainly not be sufficient to train the
model even to halfway of the performance of the pretrained
models.

The last row shows that starting with an image pretrained



image model audio model image pretrained  audio pretrained embedding combination  accuracy

Birds baseline  Birds baseline Yes Yes MBT Late Fusion 80.6
Yes Yes Yes Yes 0.8 audio + 0.2 image 32.61
Yes Yes Yes Yes 0.5 audio + 0.5 image 41.18
Yes Yes Yes Yes 0.2 audio + 0.8 image 41.23
Yes Yes Yes Yes max 41.33
Yes Yes Yes Yes concatenate 41.58
Yes Yes No No concatenate 2.68
No Yes - Yes concatenate 17.18
Yes No Yes - concatenate 38.03
Yes Yes No Yes concatenate 19.71
Yes Yes Yes No concatenate 32.81

Table 1: Effects of various model selection choices on final top 1 test accuracy for the birds species dataset. Accuracy is reported
for models trained for 120 epochs (longer training might improve some of these values, especially the no pretraining context).
The first row represents the baseline model used in the Sapsucker Woods Dataset baseline results. The baseline model is a state

of the art Multimodal Bottleneck Transformer (MBT) model.

model only is more important than starting with an audio only
pretrained network in the multimodal setting.

6.2.3 Single Modality

The last but one row presents training results for using indi-
vidual modalities. It is clear that the visual modality performs
better than the audio modality alone. However, it performs
slightly worse than joint audio-visual model.

6.2.4 A Brief Discussion of COLA

validation_accuracy

Figure 4: A sample of training experiments for COLA. Most
of the experiments did not go higher than 10 percent detection
rate.

Now that we have a model that trains properly towards an
acceptable accuracy level for the low resource audio-visual
setting, we can experiment more confidently, using the initial
results as a guiding tool for sanity checking. From inspecting
the initial set of experiments, one theory to validate going
forward would be whether the audio data processing pipeline
is working correctly. Given the experiment plot presented in
Figure 4, we could tell that training COLA wasn’t effective,
possibly because of inaccurate hyperparameter configuration.
However, we also tried to train the PANN model for audio

only and had almost similar difficulty. We reported audio
only result in the project as the audio-visual model with zero
weighting from the visual component (which possibly works
still because of more contribution from the image dataset).
However, the audio-visual training failed when using COLA
with the image EfficientNet model. We therefore pin the audio
data as the commonality between the failed training exper-
iments. We will investigate further if our audio extraction
process from the birds video dataset is working properly.

7 Conclusion

From this project, we got the chance to setup a prototype lower
resource models for audio visual learning than is currently
explored in the literature especially for on-device use cases.
Through the set up, we produce initial results towards benefits
of using multiple information sources (modalities) for bird
species classification.

In future works, we aim to experiment with opportunities to
drive the size of this initial audiovisual model down further us-
ing approaches in the tinyML community (especially through
finding the most important portions of the network that con-
tribute to high performance and mainly focusing on them).
We will also explore the model performance on iNaturalist
dataset in order to have a more general purpose low resource
species classification model to use in the wild. Finally, we will
deploy the models in real world animal monitoring use cases
to close the loop on making practical tiny machine learning
models.
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