
Zynq Parrot Core Profiling for Matrix Multiplication

Introduction
With the increasing demand for computation on devices on the network edge (such as on
phones and IoT devices) as well as in off the grid settings, more software and hardware
solutions are being co-designed to make the computations possible [1]. This paradigm is also
useful in developing countries where network connectivity can be strained and device resources
may be limited [2]. Some devices in the low resource settings even lack compilers to make
smart decisions on how to restructure code to run optimally on the given hardware. It becomes
important therefore to incorporate techniques that help make efficient use of scarce resources
and potentially without loss of performance.

In this project, we set up a measurement system in the zynq parrot implementation to capture
pipeline stalls due to cache misses and notice performance differences when we implement two
techniques for data reuse proposed for matrix multiplication.

Background

Black parrot is an open source processor originally funded by DARPA but currently pulls from
the computer hardware community to build a modular and easy to adopt RISC-V processor with
offerings for ASIC and FPGA [3]. Zynq board created by Xilinx is a programmable system on
chip that has proved to be very useful among researchers and hackers alike to tinker with
computer hardware development and experiments [4]. For this project, we use the Pynq-Z2
offering of the Zynq board which comes with an ARM core processor and traditional FPGA
fabric logic.

Matrix multiplications underlie many of the algorithms that eventually will be run on edge
compute devices. In this project, we combine the power of black parrot and the zynq board to
open up measurements on the hardware level to estimate performance benefits of matrix
multiplication optimizations.

Zynq Parrot Setup
Zynq Parrot is an implementation of Black Parrot to run on the Zynq board with the ARM core as
a Processor Subsystem, hosting a control program, which is used to issue read/write
instructions to the Black Parrot processor in the FPGA as a Programmable Logic element. We
use the matmult-float beebs benchmark to test how black parrot performs with different matmult
optimizations.

We made the following changes to zynq parrot.
i. Convert bind construct for collecting processor stall information from black parrot to a
synthesizable construct.
ii. Instantiate the profiler in a copy of black parrot unicore minimal found in the top zynq cosim
black-parrot-example directory and update the flist.vcs file to point to the copy.

iii. Update the top_zynq file to pull the counters from (ii) to the CSR registers

Matrix Multiply Optimizations & Results

In order to improve throughput and reduce resource utilization requirements for matrix
multiplication, there have been a number of proposed approaches. Of these approaches, I
select two that make use of the knowledge of register load patterns to improve data reuse as
discussed in [5]. The standard for-loop for matrix multiplication looks like the code snippet in
Figure 1.

Figure 1. Typical 3 for-loop NxN matrix multiplication

i. Spatial Locality is based on the assumption that during the matrix multiply operations, nearby
data can be reused. In particular, we reuse the value from one of the matrices throughout an
inner for loop as shown below. This saves multiple data moves where the value in register r
would have been stored and loaded within the innermost for-loop.

Figure 2. A rewrite of the matrix multiply for loop to take advantage of spatial locality.

ii. Temporal Locality assumes that data that was recently used will be used again. In the block
implementation, matrices are broken into small blocks of size Block by Block such that data for
the block fits into the cache and used in computing a partial sum as in Figure 3.

Figure 3. Block matrix multiplications to take advantage of temporal locality.

I tested these both in verilator simulation and on the FPGA board. In verilator, taking advantage
of spatial locality led to fewer icache misses, as a result of data reuse from matrix B as shown in
figure 1. There was however a worsening effect due to more cache replacements for matrix A.

Table 1. Verilator icache and dcache miss/rollback results for running float matrix multiplications at size
10,15 and 20. Default refers to the 3 for loops for matrix multiplication, temporal uses a block size of 1.

Default (matmult-float) Spatial (matmult-float)

Temporal (matmult-float)

At the default 512 cache size, matrices of size 1000x1000 started to take much longer to run the
for loops but were still not seeing cache misses to test the benefits of running the spatial and
temporal locality algorithms. I therefore ended up changing the cache size to 8 and 1 set before
being able to test the changes in reasonable time. The change is also in line with testing
performance on tiny devices with limited memory.

Figure 4. Changing black parrot cache size from 512 (in blue comment) to 8 and cache sets from 64 to 1.

Figure 5. Graphs of Data cache and Instruction cache misses and rollbacks as well as time taken by
algorithm type and matrix size

As seen from figure 5, using blocking gave the most benefits on the FPGA regarding Dcache
misses and block size 20 of the options we tried performed the best. Effects on Icache are not
very well defined. For spatial locality, we didn’t see much benefits but that could be because our

current cache size ends up causing more misses in the matrix we don’t fix a spot in (i.e. the
matrix B in Figure 2) and so a bigger cache is needed to see the benefits.

Conclusion

With increasing need for compute intensive algorithms on tiny devices, hardware/software
codesign becomes more important than ever before. In this project, we took a look at one such
codesign and the potential gains in simulation and on an FPGA board. For future projects, we
hope to dive deeper into that hardware side of things to learn of further optimization techniques
that can assist in writing hardware aware algorithms.

References:
[1] Shi, Weisong, et al. "Edge computing: Vision and challenges." IEEE internet of things journal 3.5
(2016): 637-646.
[2] MTSHALI, Mxolisi, et al. "Edge Computing for Emerging Markets Addressing African Needs." 2019
IST-Africa Week Conference (IST-Africa). IEEE, 2019.
[3] Petrisko, Daniel, et al. "Blackparrot: An agile open-source risc-v multicore for accelerator socs." IEEE
Micro 40.4 (2020): 93-102.
[4] Crockett, Louise Helen, et al. The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the
Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic Media, 2014.
[5] http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/lectures/12-cache-memories.pdf

http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/lectures/12-cache-memories.pdf

