
Putting Adaptive Federated Learning in a 2G Context
Emmanuel Azuh Mensah
ICTD University of Washington

ABSTRACT
With the proliferation of machine learning algorithms and their sub-
sequent usage in every day lives, it is clear the enormous benefits
of investing in machine learning. In the current global landscape
however, wealthy nations are able to afford expensive computa-
tional resources for use in training and using machine learning
models in various applications. Smaller countries are not only at a
disadvantage because a small set of people are able to learn about
machine learning but they also have extremely limited resources
to support in training such models. This does not mean however
that the need for these models in various applications is lacking in
developing countries. This paper explores the performance impli-
cations of federated learning in an extreme environment setting
- low resource edge devices (eg raspberry Pi) in poor networking
environments (2G).

CCS CONCEPTS
• Edge Machine Learning → Embedded systems; • Federated
Learning; • Networks→ 2G;

KEYWORDS
federated learning, development computing, machine learning, poor
networks

ACM Reference Format:
Emmanuel Azuh Mensah. 2021. Putting Adaptive Federated Learning in a
2G Context. In Proceedings of Computer Communication and Networks (CSE
561 ’21). UW CSE, Seattle, WA, USA, 6 pages. https://doi.org/10.000/0000

1 INTRODUCTION
The explosion of end user and IoT devices has triggered a huge
interest in pushing compute from data centers closer to the network
edge in an effort to reduce privacy breaches, save network conges-
tion from massive data transfers, etc. This movement towards edge
compute has no less seen increased machine learning algorithms
deployed to the edge. One regime of machine learning on the edge
which has recently gained a lot of traction is federated learning.
Federated learning algorithms seek to coordinate multiple devices
on the edge to learn a global model by pooling together resources
without needing to share data with each other. Most of these ad-
vances however are located in richer countries, and as a result, the
models don’t take into account conditions prevalent in developing
countries. We put federated learning in the context of developing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CSE 561 ’21, March 2021, Seattle, Washington USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 000-0000-00-000/00/00.
https://doi.org/10.000/0000

countries in this paper to investigate how such algorithms perform
and explore ways to make the models usable in the global south.

The rest of the paper is organized as follows: we provide some
background for edge machine learning, then briefly describe the
objective of the original paper we will be investigating including
explaining concepts that are machine learning specific. Next, we
make measurements to investigate the effects of algorithm parame-
ters as well as network characteristics on the training performance.
Then we investigate how a compression algorithm can reduce the
training time of the algorithm under poor network conditions.

2 BACKGROUND
Edge machine learning has seen a huge explosion in interest in
recent years due to its appeal to preserve user privacy as well as
the promised efficiency of not needing to do all the training in
large compute clusters but take advantage of compute power of
combined many small devices. By 2025, there is estimated to be 80
billion connected devices generating about 160 zettabytes of data,
10 times as much data as was generated in 2016, forcing a huge
need to move learning to the network edge [11].

Among the innovations to support edge machine learning are
learning aware networking concepts such as using analog aggrega-
tion of edge updates over the air using broadband transmission to
reduce communication latency [12]. Other works look at optimal
selection of parameters such as batch size to efficiently train on
edge devices while taking communication allocation into account
[9]. [7] also tackles this problem by partially migrating model ag-
gregation to edge servers from the cloud and formulates a joint
computation and communication resource scheduling objective for
devising a global cost minimization algorithm.

All these efforts go towards making the next wave of ML/AI
applications possible. [5] proposes edge learning as a service to
help push health care diagnostics and advice closer to users by users
directly getting health information from devices in the comfort of
their homes. Of the very few applications of edge computing in
developing countries includes [1] which uses edge computing to
monitor the health of electricity transformer stations in India but
only as a static model (instead of one that constantly updates).

Many applications of ML in embedded systems can be translated
into development context, especially since the applications already
consider resource constrained devices. There are still assumptions
about available resources that don’t translate well to developing
countries and these assumptions need to be investigated and new
solutions proposed for them.

3 ADAPTIVE FEDERATED LEARNING
We briefly introduce the algorithm in [10] that we base our experi-
ments1 on in this chapter.

1https://github.com/emma-mens/adaptive-federated-learning

https://doi.org/10.000/0000
https://doi.org/10.000/0000

CSE 561 ’21, March 2021, Seattle, Washington USA Azuh et al.

On a high level, the workers in federated learning periodically
receive the global weights from the aggregator along with the
number of time steps till the next aggregation step, 𝜏 . Each worker
computes a new weight update along with other parameters needed
for computing 𝜏 as well as estimation of how much of predefined
resource constraints are left. All these information are pushed to
the aggregator at the next aggregation step. The worker algorithm
is shown in figure 1.

Figure 1: Federated Learning at Workers [10]

The aggregator receives information from the workers at the end
of each aggregation round and computes the next value for 𝜏 , the
new global weights and an estimation for ensuring the algorithm
stays within resource budget as shown in figure 2. For more details
on the federated learning algorithm, please refer to [10].

For this paper, we focus on the learning objective to train a digit
recognition system for the MNIST [4] database. The algorithm used
is the support vector machine (SVM) [8] to perform classification
into the 10 digit classes based on the learning objective

𝜆

2
| |w| |2 + 1

2
𝑚𝑎𝑥{0; 1 − 𝑦 𝑗w𝑇 x𝑗 }2

where w is the weight vector of dimension 784 = 28× 28 represent-
ing the dimension of the images, 𝑦 𝑗 is the label for an image and
𝑥 𝑗 is the example image. The objective is optimized using stochas-
tic gradient descent [2] which takes steps in the direction of the
gradient towards a minimum.

Figure 2: Federated Learning at Aggregator [10]

4 EXPERIMENTAL SETUP
All experiments in this paper are ran on an Amazon Web Service
EC2 t2.medium instance 2. We ran one aggregator and five edge
nodes as processes on the same instance. The instance was running
an Amazon Linux operating system. For the modification of net-
working characteristics, we used the Linux Traffic Control tool 3.
Throughout our experiments, we assume the nodes are resource
constrained and use that to guide decision making. In terms of the
data distribution types described in [10], we used the uniformly
distributed case for this paper.

5 MEASURING EFFECTS OF ALGORITHM
PARAMETERS ON TRAINING
PERFORMANCE

In this section, we explore the effects of algorithm parameters on
training performance. The goal of these experiments was to trade
some accuracy for looser restrictions on resource requirements
(time, compute capability, etc). The experiments estimate how the
following parameters affect the accuracy of the model as well as
the training time required:

(1) Search range parameter (𝛾) with value 10 in [10]. This value
is used to search for the optimal value of 𝜏 , the time between
global aggregations around the current value of 𝜏 . So if 𝛾 =

2https://aws.amazon.com/ec2/instance-types/t2/
3https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

Putting Adaptive Federated Learning in a 2G Context CSE 561 ’21, March 2021, Seattle, Washington USA

10, the new value of 𝜏 will be within 1 and𝑚𝑖𝑛{𝛾 ∗𝜏𝑜𝑙𝑑 , 𝜏𝑚𝑎𝑥 }
(line 20 of Figure 2). We use the values [3, 7, 10] for the ex-
periments. The motivation for selecting values lower than 10
is to make the search space smaller in order to save compute
resources.

(2) 𝜏𝑚𝑎𝑥 themaximum allowable time between successive global
aggregations with value 100 in [10]. We use [100, 125, 150]
in order to allow for slower compute at the nodes if needed.

(3) The time budget for training the algorithm. Again, we use
larger values than the value 15 used in [10] to allow for
slower nodes due to minimal compute power at some edge
nodes. We choose values [15, 30, 60].

𝛾 𝜏𝑚𝑎𝑥 Time budget (s) Accuracy (%) Wall Time (s)
3 100 15 87.23 29.2996
3 100 30 87.48 48.3260
3 100 60 87.58 102.9359
3 125 15 87.26 27.036
3 125 30 87.52 47.2637
3 125 60 87.54 100.549
3 200 15 87.32 27.918
3 200 30 87.52 46.793
3 200 60 87.70 101.198
7 100 15 87.16 29.366
7 100 30 87.50 47.2803
7 100 60 87.62 95.306
7 125 15 87.27 27.0763
7 125 30 87.48 45.419
7 125 60 87.62 100.177
7 200 15 87.26 28.974
7 200 30 87.46 46.729
7 200 60 87.80 94.642
10 100 15 87.32 26.848
10 100 30 87.53 46.6732
10 100 60 87.61 103.939
10 125 15 87.28 27.716
10 125 30 87.51 49.122
10 125 60 87.50 98.886
10 200 15 87.31 28.183
10 200 30 87.53 45.492
10 200 60 87.51 99.672

Table 1: Effect of algorithm parameters on training performance.

From Table 1, we see that if no bound is set on the total time
allowed for the algorithm to run, we can achieve similar accuracy
values even with varying the selected algorithm parameters. In-
creasing 𝛾 slightly decreased the total time needed for training.
Increasing the time budget as expected increases the total time till
convergence of the algorithm. Varying 𝜏𝑚𝑎𝑥 had a less clear trend
as it seemed to depend on the values of 𝛾 (at lower values, increas-
ing 𝜏𝑚𝑎𝑥 tends to decrease training time but at higher values led to
higher training times) and an even less clear trend when varying
time budget.

For the remainder of our experiments, we use 𝛾 = 3, 𝜏𝑚𝑎𝑥 = 200
and Time budget of 60 seconds following the logic presented at the
beginning of this section.

6 MEASURING EFFECTS OF NETWORK
CHARACTERISTICS ON TRAINING
PERFORMANCE

Next, we look at how various networking constraints affect the con-
vergence time of the algorithm if we want to keep the performance
at a similar level to when we impose no network constraints.

To simulate network degradation, we impose any network change
only on the central aggregator since workers don’t communicate
among themselves. The assumption is that if there is loss intro-
duced at the ingress and egress of the aggregating server, both
ways of the connection between the aggregator and a worker will
experience the degradation so applying it only on the aggregating
server should be sufficient.

The experimental guide for network characteristics4 for 2G and
3G are as follows:

(1) Performance by bandwidth (2G:100kb/s, 200kb/s, 400kb/s;
3G:0.5Mb/s, 2Mb/s, 5Mb/s)

(2) Performance by loss (5%, 10%, 20%)
(3) Performance by latency (2G:300ms, 500ms, 1000ms; 3G:100ms,

200ms)

Bandwidth (Kb/s) Loss (%) Latency (ms) Accuracy (%) Wall Time (s)
- - 300 0.877 297.359
- - 500 0.8755 465.042
- - 1000 0.8755 831.553

1000000 - - 0.8759 97.781
1000 - - 0.8752 254.055
100 - - 0.8758 2022.105
- 5 - 0.8757 145.206
- 10 - 0.8753 179.623
- 20 - 0.8756 221.851

Table 2: Effect of network characteristics on training performance.

From table 2, we see that as expected, under tougher restrictions
of bandwidth, loss and latency, it takes a longer time for conver-
gence of the algorithm. Especially, if we use 100Kb/s it takes about
20 times longer compared to if the connection was 1Gb/s. For the
rest of the paper, we focus on a method to improve convergence
time under tighter bandwidth conditions since it had the most
drastic impact on algorithm convergence time.

7 MEASURING EFFECTS OF ADAPTIVE
COMPRESSION ON TRAINING TIME

Given the effects of low bandwidth on the convergence time of the
federated learning algorithm, we consider compression as a way to
reduce the time requirement. We make the observation that most of
the weights are close to zero during training as shown in Figure 3.
Our first approach was to compress by cutting the smallest absolute
valueweights closest to zero. Thismethod resulted inworse training
time and worse accuracy, leaving us in a worse position as shown
in Figure 4.

Next we adapt the algorithm shown in Figures 5 and 6, taken
from [6] to perform compression based on gradients in this paper.
On a high level, each worker performs gradient compression by
4https://hpbn.co/mobile-networks/

CSE 561 ’21, March 2021, Seattle, Washington USA Azuh et al.

Figure 3: Histogram of weight distribution at the beginning of train-
ing (top) and at the end of training (bottom)

selecting the gradients corresponding to the top 𝑐 largest gradient
values. This compressed gradient matrix is sent to the parameter
server.

The parameter server receives the compressed gradients from all
the workers asynchronously, giving more emphasis to more recent
gradients than older ones. For more details, refer to [6].

In this section, we adapt the algorithm above5 into our federated
learning setup. The original federated learning setup is synchro-
nous whereas the Adaptive compression algorithm is asynchronous.
We therefore made adjustments to only compress the weights but
not take into account the staleness compensation in Adaptive com-
pression.

Another important distinction between the federated learning
setup we used in this project and that in [6] is that the clients don’t
perform any weight updates in AdaComp. They only compute gra-
dients and compress by pruning small "gradients" to the parameter
server. In our setup, the clients perform weight updates and the
parameter server aggregates the weight updates. Our adaptation
is to only send new weights that differ from the previous global
model weights. That is, we compute

𝑎𝑏𝑠 |w𝑔𝑙𝑜𝑏𝑎𝑙 −w𝑙𝑜𝑐𝑎𝑙 |

and compress by only sending weights corresponding to the top 𝑐%
largest absolute value change in weight. The weights are sent along
with their indices in the weight vector. At the parameter server, any
missing index indicates a low change in value and so the previous

5https://github.com/Hardy-c/AdaComp

Figure 4: Weight compression vs. Training time (top) and Weight
compression vs. Accuracy (bottom)

weight value in the global model is used. We found this method
to be effective in actually reducing the training time by about half
without reducing classification accuracy by much as seen in Figures
7 and 8.

From Figure 9, we see that ingress traffic to the parameter server
doesn’t drop by much indicating that even though we send about
0.05% of the original weight vector, we are sending small vectors
more frequently, suggesting that the pruned weights end up caus-
ing the algorithm to take more global aggregations to converge but
each aggregation is now much quicker than with no compression.
Compressing too close to 0 also leads to a spike in ingress traffic
suggesting the algorithm start to require too many global aggrega-
tions to learn so there is a sweet spot for low training time and low
ingress traffic size.

Putting Adaptive Federated Learning in a 2G Context CSE 561 ’21, March 2021, Seattle, Washington USA

Figure 5: AdaComp at Wokers [6]

Figure 6: AdaComp at Parameter Server [6]

Figure 7: Gradient based compression vs Training time

Figure 8: Gradient based compression vs Accuracy

Figure 9: Gradient based compression vs Ingress Traffic

8 CONCLUSION AND FUTURE DIRECTIONS
With the initial findings of how poor networking conditions affect
federated learning algorithms, we believe we are in a better position
to think of ways to contribute to this line of work, especially in
the developing countries context by devising machine learning
aware networking algorithms that work well in rugged terrains
(low resource countries and extraterrestrial applications such as in
Mars exploration alike). Below are a few future directions.

(1) Including optimized compression in microTVM [3]. In this
project, we didn’t impose a strong constraint on the memory
capability available to each client server. In actual small
device edge learning, even the compression algorithm may
be expensive and a more optimized version (eg operating
in sparse space) may be required. We would like to include
such capabilities in the microTVM architecture.

CSE 561 ’21, March 2021, Seattle, Washington USA Azuh et al.

(2) Overcoming high latency high loss. We focused on low band-
width in this project by compressing the data communicated.
A possibly harder constrain to solve is dealing with high
loss when the network exhibits high latency and has low
bandwidth. We would like to explore low memory caching
mechanisms in such cases.

(3) Understand better the interaction amongst all three factors
- bandwidth, loss and latency - on algorithm performance.
This will involve a better understanding of the linux traffic
control tool. We found the documentation on the traffic
control tool to be difficult to follow. Going forward, we will
workwith people who have used the tool to get better control
on network characteristics to use in the experiments.

(4) Using actual multiple devices instead of a simulated environ-
ment of multiple processes on the same device representing
the parameter server and clients.

(5) Verifying that our observations generalize to all the different
data distribution cases.

(6) Studying the case where we use Convolutional Neural Net-
works which are a lot more memory intensive machine learn-
ing models.

ACKNOWLEDGMENTS
Many thanks to Ratul for his advice on tools to use, Kurtis Heimerl
for his support with AWS computing resources and Esther Jang for
lending her Raspberry Pi which we will utilize in future works.

REFERENCES
[1] Imtiyaz Ahmad, Yaduvir Singh, and Jameel Ahamad. 2020. Machine Learning

Based Transformer Health Monitoring Using IoT Edge Computing. In 2020 5th
International Conference on Computing, Communication and Security (ICCCS).
IEEE, 1–5.

[2] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural networks: Tricks
of the trade. Springer, 421–436.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578–
594. https://www.usenix.org/conference/osdi18/presentation/chen

[4] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine 29, 6 (2012),
141–142.

[5] Li Gaolei, Guangquan Xu, Kunmar Sangaiah, Jun Wu, and Jianhua Li. 2019. Edge-
LaaS: Edge Learning as a Service for Knowledge-Centric Connected Healthcare.
IEEE Network 33 (07 2019). https://doi.org/10.1109/MNET.001.1900019

[6] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. 2017. Distributed deep
learning on edge-devices: feasibility via adaptive compression. In 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA). IEEE,
1–8.

[7] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. Hfel: Joint edge
association and resource allocation for cost-efficient hierarchical federated edge
learning. IEEE Transactions on Wireless Communications 19, 10 (2020), 6535–6548.

[8] William S Noble. 2006. What is a support vector machine? Nature biotechnology
24, 12 (2006), 1565–1567.

[9] Jinke Ren, Guanding Yu, and Guangyao Ding. 2020. Accelerating DNN training
in wireless federated edge learning systems. IEEE Journal on Selected Areas in
Communications 39, 1 (2020), 219–232.

[10] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive federated learning in re-
source constrained edge computing systems. IEEE Journal on Selected Areas in
Communications 37, 6 (2019), 1205–1221.

[11] Guangxu Zhu, Dongzhu Liu, Yuqing Du, Changsheng You, Jun Zhang, and Kaibin
Huang. 2020. Toward an intelligent edge:Wireless communicationmeetsmachine
learning. IEEE communications magazine 58, 1 (2020), 19–25.

[12] G. Zhu, Y. Wang, and K. Huang. 2020. Broadband Analog Aggregation for Low-
Latency Federated Edge Learning. IEEE Transactions on Wireless Communications

19, 1 (2020), 491–506. https://doi.org/10.1109/TWC.2019.2946245

https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/MNET.001.1900019
https://doi.org/10.1109/TWC.2019.2946245

	Abstract
	1 Introduction
	2 Background
	3 ADAPTIVE FEDERATED LEARNING
	4 EXPERIMENTAL SETUP
	5 Measuring Effects of Algorithm Parameters on Training Performance
	6 MEASURING EFFECTS OF NETWORK CHARACTERISTICS ON TRAINING PERFORMANCE
	7 MEASURING EFFECTS OF ADAPTIVE COMPRESSION ON TRAINING TIME
	8 CONCLUSION AND FUTURE DIRECTIONS
	Acknowledgments
	References

